WELCOME TO JOETSU THERMAL POWER STATION!
The Joetsu Thermal Power Station is located on the coast facing the Sea of Japan. Constructed on reclaimed land on the east side of Joetsu Port in Joetsu City, Niigata Prefecture. Since the first unit began operating in 2012, the power station has provided Niigata Prefecture and other areas with a stable supply of electricity. It went into full operation in May 2014 with the entire two groups (four generators) beginning operations. The power station employs a multihub combined cycle power generation system that consists of two 1,300-MW-class gas turbines and one steam turbine, with a total output of 2,380 MW. The 460,000 m² site has a berth and LNG tanks for receiving LNGs.

Berth (for receiving LNG)

The Joetsu Thermal Power Station has a berth (total length: 486 m) where the world’s largest LNG ships can dock. The pipe of a docked LNG ship is connected to a shore pipe using a loading arm, then the ship’s pump is used to unload LNG to an LNG tank on the shore.

LNG tanks

LNG transported by LNG ships from abroad is stored in three LNG tanks on the site and is used as fuel for power generation. At the Joetsu Thermal Power Station, the dike is integrated with the tanks for effective utilization of the site.

- Height: 54.0 m, outer tank diameter: 83.2 m,
 Inner tank diameter: 81.8 m, capacity: 140,000 m³

Gas turbine

Fuel is burned in the compressed air, and the high-temperature combustion gas (at approximately 1,300°C) is used to drive a gas turbine. A generator that is directly connected to the gas turbine generates 194.15 MW of electricity.

Heat recovery steam generator

The heat recovery steam generator generates steam by heat exchange of exhaust gas (approximately 600°C) from a gas turbine and sends the steam to a steam turbine. An exhaust gas desulfurization equipment is built into this steam generator.

Outline of facilities

<table>
<thead>
<tr>
<th>Unit No.</th>
<th>Output (MW)</th>
<th>Fuel</th>
<th>CDD</th>
<th>GT combustion temperature (°C)</th>
<th>Power generation type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>1-1</td>
<td>595</td>
<td>LNG</td>
<td>July 2012</td>
<td>1,300</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>595</td>
<td>LNG</td>
<td>January 2013</td>
<td>1,300</td>
</tr>
<tr>
<td>Group 2</td>
<td>2-1</td>
<td>595</td>
<td>LNG</td>
<td>July 2014</td>
<td>1,300</td>
</tr>
<tr>
<td></td>
<td>2-2</td>
<td>595</td>
<td>LNG</td>
<td>May 2014</td>
<td>1,300</td>
</tr>
</tbody>
</table>

Name: Joetsu Thermal Power Station
Location: Joetsu City, Niigata Prefecture
Site area: Approx. 460,000 m²

Central control room which allows operation by a small number of operators

The equipment control has been fully automated, enabling operation and control by just a mouse. The data of power generation and LNG receiving equipment can be checked in real time, achieving integrated monitoring and operation of the entire power station.
Environmental Initiatives

Preventing air pollution

The power station is fueled with LNG and therefore does not discharge the sulfur oxides which are the cause of particulate matter and acid rain. The use of low-NOx burners and exhaust gas denitration equipment has also reduced the discharge of nitrogen oxides. The white smoke rising from the plant stacks on cool days is steam.

Keeping the oceans clean

The waste water generated at the power station undergoes pre-processing such as oil separation and neutralization. It is then purified by means of condensation, sedimentation, filtration and neutralization, and the water quality is checked before it is discharged.

Protecting the global environment

Since power stations make use of the earth’s enriched resources, it is important to achieve high level of thermal efficiency when generating electricity due to preservation of the global environment. In addition, greater generating efficiency means that less carbon dioxide, which causes global warming, is produced. We are committed to conserve the earth’s finite resources and curb global warming by leveraging the technical capabilities we have accumulated over the years and by introducing highly efficient power generating equipment.

Flare stack

LNG is in a liquid state at about -160°C, but the heat influx from the surroundings increases the temperature inside the tank and causes the liquid to evaporate. LNG is a liquid at about -160°C and returned to its gaseous state when it is warmed by the outside temperature. In normal operation, the gas is used as a fuel for power generation. When the generated gas cannot be treated due to equipment maintenance etc., waste combustible gas is formed. The main component of the gas is methane, which has a significant environmental impact when released into the atmosphere without being treated, so a flare stack is used to burn the gas and thus reducing its environmental impact.

Exhaust gas denitrizer

An exhaust gas denitrizer that uses the dry ammonia catalytic reduction method is installed to reduce nitrogen oxides in the exhaust gas. Ammonia gas is fed into the flue gas converting the nitrogen oxides into harmless nitrogen and water.

Group configuration

Group 1 (1,190 MW)

Group 2 (1,190 MW)

Group symbol

JERA Co., Inc. Joetsu Thermal Power Station
2 Yachio, Joetsu City, Niigata Prefecture 942-0027, Japan
Tel: +81-25-539-5310
The use of the content of this document for unintended purposes and its unauthorized reproduction or duplication are strictly prohibited. Compiled on July, 2020